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Abstract

Urban heat islands are becoming an increasingly important challenge in the 21st
century. Land surface temperature is a key factor in the urban heat island risk assessment.
Its monitoring is possible through satellite land surface temperature (LST) detection.
However, satellite images with insufficient spatial resolution are available to monitor
temperature changes in urban areas, which arise due to the technical limitations of satellite
thermal infrared sensors. Numerous algonithms have been proposed to solve the problem
of the coarse spatial resolution of LST. This study explores the application of a machine
learning algorithm based on a Random Forest (RF) regression model between LST and
predictor variables such as aspect, digital elevation model (DEM), hillshade, normalized
difference vegetation index (NDVI), building heights, digital height model (DHM), and land
cover. The study focuses on the municipality of Medijjana, located in the City of Ni$ in the
Republic of Serbia. The spatial resolution of MODIS LST was improved from 1 km to 250
m. The results indicate that the applied machine learning method can predict potential
temperatures at a finer scale with high accuracy, with NDVI indicating a significant local
influence on LST. The results indicated that the RF approach demonstrated a robust and
high-performance methodology. The Mean Square Error (MSE) values ranged from 0.730
°C2to 1.028 °C? while the Root Mean Square Error (RMSE) values varied from 0.854 °C
fo 1.100 °C across the 84 models generated.
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1. INTRODUCTION

Urban Heat Islands (UHIs) are the regions within urban areas that are considerably hotter
than the surrounding rural or urban environment [1]. The UHI phenomenon arises from the
uncontrolled growth of urban areas largely from anthropogenic reasons — the modification of
natural landscape due to urban expansion by replacing forests, wetlands, and grasslands
with structures, roads, and other construction interventions in general [2]. UHI poses a risk
because it intensifies heat exposure in cities, leading to increased health problems, energy
demand, and reduced liveability, especially during extreme heat events. Therefore, UHI topic
has recently attracted many researchers.

Land surface temperature (LST) is widely used in UHI research [3, 4], as it enables the
quantification of temperature differences between urban and rural areas, as well as spatial
variations within cities, thereby enhancing the understanding of hazard component of UHI
risk. Obtaining LST data over extensive areas via ground measurement is impractical, but
the improvement of satellite-based thermal infrared (TIR) sensors addresses this issue [5]. A
single sensor cannot provide LST data that combines both high frequency and precise spatial
resolution due to the limits of TIR technology. Spatial downscaling of LST products with poor
resolution but high frequency, together with additional auxiliary data, is an efficient way to
overcome this difficulty [6]. Terra/MODIS sensors can observe surface temperature twice a
day in the same study area, but their spatial resolution of 1 km is low [6]. Thus, MODIS
sensors provide high temporal and poor spatial resolution. Some sensors, such as the
Advanced Spaceborne Themal Emission Reflection Radiometer (ASTER), have a high
spatial resolution of 300 m but a temporal resolution of 15 days. This indicates the importance
of developing and using appropriate methods for scaling satellite LST data. Spatial
downscaling of LST is a widely adopted approach to enhance the spatial resolution of LST
products [6, 7].

There are currently two primary types of downscaling techniques for LST: models based
on physical mechanisms and models based on statistics [8]. Based on the concepts of
thermal radiation, physical mechanism-based models aim to establish a significant,
empirically supported relationship between thermal radiance (or LST) and auxiliary data,
including land cover maps. Although these models offer insightful scientific information, their
complexity may restrict their usefulness [9].

The statistical correlations between LST and different land surface parameters are the
foundation of statistics-based models. These relationships are usually obtained from
supplementary data with relatively high spatial resolutions. The addition of adequate predictor
variables and the creation of reliable regression models are the two main phases through
which statistics-based LST downscaling techniques have largely developed to improve the
accuracy of downscaled LST [10]. Digital elevation models (DEM), land cover maps, and the
normalized difference vegetation index (NDVI) are some of the frequently used elements in
these models [6]. Statistics-based models are becoming increasingly common because they
are simpler to develop than models based on physical mechanisms [11].

Although one-factor models are typically simple, utilizing a single indicator is often
insufficient to capture LST fluctuations. As a result, multifactor models are used in practice
more frequently. Tang et al. [12], for instance, combine several variables, including
topography characteristics like DEM, slope, and aspect, remote sensing spectral indices, and
land surface reflectance data from the Red, Blue, Green, and NIR bands. The non-stationary
relationship between LST, NDVI, and DEM was also investigated by Duan and Li [13]. To
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create a correlation with LST, Bechtel et al. Also used DEM in conjunction with the normalized
difference built-up index [14].

The most common algorithms used for downscaling by statistics are linear regression
models. Linear regression formulas, however, sometimes cannot account for nonlinear
relationships between LST and remote sensing indices. To deal with this deficiency, various
models have been presented to explain linear and nonlinear relationships between LST and
driving variables.

This study aims to apply the Random Forest (RF) regression model to produce detailed
maps of LST in the municipality of Medijana, located in the city of Ni§ in the Republic of
Serbia. This model was applied in many works dealing with the same issue [6, 12]. The
enhanced maps of LST are useful in delivering vital information on the spatial patterns of
temperature anomalies, supporting the creation of enhanced UHI mitigation strategies and
urban resilience planning. With this case study, we intend to show potential applications of
using spatial downscaling as a method of overcoming the gap between coarse satellite data
and the need for detailed UHI mapping. The spatial resolution of MODIS LST in this research
was enhanced from 1 km to 250 m by incorporating various predictor variables, including
Aspect, DEM, hillshade, NDVI, building heights, the digital height model (DHM), and Land
Cover. The results indicate that NDVI plays a crucial role in influencing local LST.

The paper is organized as follows. The methodology framework, the study region,
datasets, downscaling approach, model development, and model validation are briefly
introduced in the Methodology. Results with the discussion of the developed models and their
parameters are shown in the Results and Discussion, followed by the Conclusions section.

2. METHODOLOGY

The methodology in this research comprises the following steps:

Study Area Definition - Defining the geographical boundaries of the study area.

Data Collection — Collection of remote sensing data, MODIS LST at a 1 km spatial
resolution, and predictor variables.

Data Preprocessing — This part involves transforming the data to the same coordinate
reference system (EPSG:3857 -WGS 84 / Pseudo Mercator), and determining the DHM.

Spatial Downscaling — Applying spatial downscaling techniques to reduce MODIS LST
data from 1 km to 250 m resolution, using the collected predictor variables.

Model Development — Development of the RF regression model as the analytical tool
for predicting LST.

Model Validation — Model validation is performed on out-of-bag (OOB) samples using
metrics such as mean square error (MSE) and root mean square error (RMSE).

Heat Map Generation — Creation of LST map with 250 m spatial resolution, utilizing the
validated RF model to predict LST across the study area.

2.1. Study Area

The City of Nis is situated nearby the confluence of the Nisava and Juzna Morava rivers,
and surrounded by hills in the Ni$ valley. It has a diverse population of approximately 250,000
residents. This study focuses on the central city municipality of Medijana of close to 90,000
inhabitants, covering 10 km? [15] (Figure 1). The City has a temperate continental climate,
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with an average annual temperature of 12.4 °C and 614 mm precipitation in 1991-2020. The
warmest months are July and August with an average temperature of 23.1 °C, and the
coldest is January with an average temperature of +0.9 °C [16].
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Figure 1. The location of the city of Nis in Serbia, its City Municipalities, and the study
area — the Municipality of Medijana boundaries shown on a satellite map.

S

2.2. Data collection and preprocessing

The data collection and preprocessing stages dealt with laying a foundation for the RF
regression model. Table 1 provides information regarding the data used in this research. As
mentioned earlier, the MODIS LST product, with a spatial resolution of 1 km and a temporal
resolution of 1 day, was used for the study area. The period of analysis in this research is
from 04/08/2024 to 11/08/2024, during which exceptionally high LST were recorded, ranging
from 37.7 to 41.8 °C in the study area. To enhance the resolution of the available LST
product, relationships were established with the following predictors: aspect, DEM, hillshade,
NDVI, building heights, DHM, and Land cover. DHM is the difference between digital surface
model (DSM) and DTM [17].

DHM accounts for the volume effectively utilized for residential use [17]. In general, DHM
represents building height, with a higher resolution of 30m.
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Table 1. The dataset information

& 8
Dataset Source T 2 Usage 3
T 3 kS
& i
MODIS/Terra Lar_1d _Sl_Jrface Earth Data
Temperature/Emissivity https://search.earth
Daily L3 Global 1km SIN data ﬁasa q0\}/searc km Downscaling [18]
Grid V061 (MOD11A1) h . :
v 6.1 -
Copernicus GLO-30 Digital .
EIeF\)/ation Model ) Predictor
Aspect from Copernicus
f/ll(;fj)efo Digital Elevation Open Topography Predictor [19]
- - https://opentopogra 30 m
Hillshade from Copernicus hv ora/
GLO-30 Digital Elevation bhy-org? Predictor
Model
pos g\'s\?gg%’)'ta' Surface To obtain DHM  [20]
MODIS/Terra Vegetation Earth Data
Indices 16-Day L3 Global https://search.earth .
250 m SIN Grid (MOD13Q1  data.nasa.gov/searc 250m - Predictor [21]
v006) - NDVI h
Copernicus
GHS-BUILT-S R2023A seflementemerden 444y pregictor [22]
cy.copernicus.eu/do
wnload.php?ds=buil
tH
Copernicus
CORINE Land Cover 2018 https://land.copernic
(vector/raster 100 m), us.eu/en/products/c 100 m  Predictor [23]

Europe, 6-yearly

orine-land-
cover/clc2018

In the context of the RF regression model applied to LST mapping, predictor variables
play a crucial role in determining the accuracy and reliability of the model's outputs. Predictor
variables serve as inputs that help the model understand the relationships between different
factors and how they influence LST. Figure 2 shows the maps for each of the predictors used

across the study area.

2.3. Spatial Downscaling

Statistics-based models are developed by identifying statistical relationships between
LST and various land surface parameters obtained from auxiliary data with comparatively
high spatial resolution. If the relationships between LST and its predictors remain consistent
across spatial resolutions, high-resolution LST can be estimated using these predictors. To
develop the connections required to improve the LST resolution with this approach, it is
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necessary to adapt the predictors to the coarse resolution of the LST (Re-sampling process).
The predictive model was formed using the XLStat software [24]. The software allows
building a predictive model for a quantitative response variable based on explanatory
quantitative and/or qualitative variables.
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Figure 2. Thematic maps of predictors

The resolution of 250 meters is chosen because it is the lowest resolution among the
predictors used. As indicated in Table 1, this 250-meter resolution corresponds to the NDVI.
To work with an even finer resolution, it is necessary to utilize predictors that also have high
resolutions. However, this increased level of detail demands more data, time, and memory
for processing.

Furthermore, to obtain the final LST map with high resolution, a residual correction must
be performed between the initial LST map (1 km) and the LST map obtained from the model
(250 m), on which disaggregation is now performed to a resolution of 1 km. Figure 3 shows
a schematic of the LST downscaling procedure.
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Figure 3. Land surface temperature (LST) downscaling procedure scheme

2.4. Model Development

MODIS LST products are known for their coarse spatial resolution. Regression models
have been developed to enhance LST resolution by incorporating auxiliary environmental
predictors. RF are ensembles of decision trees that can be used to solve classification and
regression problems [25]. RF regression is a powerful ensemble learning technique used for
predictive modeling. Built upon decision trees, it combines multiple individual trees to
enhance accuracy and reduce overfitting. The development process involves data
preprocessing, parameter selection, model training, and performance evaluation. For model
development, we use the Random Input variant, an essential modification of the bagging
XLstat [26]. Its objective is to increase the independence between the models (trees) to obtain
a final model with better performance. XLstat requires the entry number of trees, mtry, and
tree parameter values, such as minimum node size, minimum son size, and maximum depth.
More trees enhance stability but increase computation time. Maximum depth restricts tree
complexity to prevent overfitting. Miry refers to the number of features randomly selected at
each split when building individual decision trees. It controls the level of randomness in
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feature selection, ensuring that different trees in the ensemble consider different subsets of
features. To assess the predictive ability of RF regression, we use evaluation metrics Mean
Squared Error (MSE) and Root Mean Squared Error (RMSE):

MSE = 231 (v, - ¥,)* (1)

RMSE = \/% L (% - 1) (2)

where n is the number of sample data; Y;is the observed surface temperature in °C, and Y;
is the predicted surface temperature in °C.
The following RF parameter values were used:
e Forest parameters: Sampling (Random with replacement); Method (Random Input);
Sample size (40); Number of trees (100, 200, 500, and 1000),
e Stop conditions: Construction time (300); Convergence (50),
e Tree parameters: minimum node size (2); minimum son size (1); maximum depth
(10, 20, and 30); mtry (1, 2, 3,4, 5, 6, and 7); CP (0,0001).
The sensitivity of model parameters was tested by varying model parameters such as
maximum depth, number of trees, and mtry.

2.5. Model Validation

When training a RF model, each tree is constructed using a bootstrap sample of the data.
This means that some data points are randomly selected (with replacement) to build the tree,
while those not included in this sample are referred to as OOB samples. These OOB samples
serve as a means to evaluate the model predictions, offering an internal validation method
that eliminates the need for separate test data. This technique is especially advantageous as
it allows for the evaluation of the model during training, thus conserving both time and
computational resources [27]. Also, OOB samples can be used in the model parameter
tuning process, in order to choose the optimal model for LST prediction. We use OOB
samples for parameter optimization and model validation.

3. RESULTS AND DISCUSSIONS

3.1. Predictor Significance and Parameter Sensitivity

To adapt the RF machine leaming model to various problem domains, it is required to
calibrate the model parameters accordingly. The selection of the optimal parameter
configuration is crucial, as it significantly influences the overall performance and predictive
accuracy of the model. Ensuring that these parameters are finely tuned can lead to more
effective and reliable outcomes in a range of applications. One of RF valuable features is the
ability to measure the importance of each variable (or feature) in making predictions. Mean
Decrease in Impurity (MDI) — also known as Gini Importance, measures the extent to which
each feature contributes to reducing uncertainty (impurity) when making splits in decision
trees. Features that create significant splits receive higher importance scores. High
importance values indicate features that strongly influence predictions. Features with low
importance may contribute little and could be considered for removal in optimization
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processes. Because in recent studies of size reduction techniques, many authors have
shown that introducing a large number of predictors improves model performance [9, 28], our
preliminary model concept included a variety of explanatory variables. We also included
some predictors that we have not seen used in similar studies, such as building heights and
DHM. However, our analysis indicated that increasing the number of predictors does not
significantly affect the accuracy of the model, which was also pointed out by Bartkowiak, P.
et al. [29]. This is illustrated in Figure 4, which highlights the significance of the seven
variables employed to predict surface temperatures, represented by the mean increase error
(MIE). MIE values indicate that DEM, NDVI, and Building Heights have a more significant
role in the LST prediction process. We assumed that DHM would have a more significant
influence in predicting LST, however, it did not come to this, most likely due to insufficiently
good fitting of DSM and DEM.
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Figure 4. Variable significance in the prediction of LST

Figure 5 demonstrates the sensitivity of the developed models to varying parameters:
maximum depth (3 cases) and mtry (from 1 to 7) for the fixed number of trees (4 cases),
which yields a total of 84 models (3x7x4=84).
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Figure 5. Sensitivity of the model to changes in the number of trees, maximum depth,
and mtry (x-axis) through MSE
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The highest variability, shown by the highest MSE, corresponds to the value mtry = 1. A
number of frees and max depth did not cause a significant variation in model performance.

3.2. Results of Model Validation

Out-of-bag (OOB) error is a key indicator in RF models. OOB error is computed during
training. It provides an internal estimate of the model's performance without the need for a
separate validation set or cross-validation. For each data point, predictions are made using
only the trees that did not include that point in their training set. The OOB error (MSE), is then
calculated as the average error across all these predictions. The errors varied from 0.730 °C?
to 1.028 °C? across the 84 models generated. Figure 6 illustrates the evolution of OOB error
as the number of trees changes. The left diagram depicts the model with the smallest error,
while the right diagram illustrates the model with the largest developed error.
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Figure 6. OOB error evolution. Left: the best performing model, Right: the worst
performing model

The model selected for LST downscaling has the following parameter values: mtry = 6;
number of trees = 200; max. depth = 30.

The selected model has RMSE of 0.854 °C, while in the work that also used the RF
approach, RMSE of 2.2 K was obtained [29]. Hutengs & Vohland [28] applied random forest
regression to MODIS LST data with RMSEs ranging from 1.41 K to 1.92 K. Similarly, good
results were obtained by Maeda [30]. The mentioned RMSE values depend on the location
and are greatly influenced by the topographical complexity, as well as the heterogeneity of
the vegetation in the study area. Our RMSE value indicates that we have established a highly
accurate model for LST prediction.

3.3. Results of Downscaling — Identifying UHI Hotspots

Spatial downscaling of LST data allows us to identify localized areas of temperature
peaks, i.e., UHI hotspots. Figure 7 illustrates the temperature distribution across the
municipality of Mediana at its original resolution of 1 km. It can be seen that the western part
of the municipality, which is the most built-up area, is also the warmest. However, areas of 1
km? require considerable investments to mitigate the effects of UHI, which may not be justified
because it is not likely that the whole area suffers from overheating. To determine if a high
investment is justified or if it needs to be reduced to a smaller area, it is rational to work on
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improving the resolution of the LST map. Figure 8 shows the results of spatial downscaling
of LST, which is produced by the model formed using a RF.

—
37.4 39.6 41.8
Figure 1. Original MODIS 1 km LST map over the municipality of Medijana
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Figure 2 . Downscaled MODIS map with 250 m resolution, with zoom on the
hottest part of the study area and five identified UHI hotspots (black boxes)

In the lower part of Figure 8, we highlighted five fields with a resolution of 250 m, where
the highest LST values are predicted, ranging from 41.6 °C to 43.1 °C. These areas include
Obilicev venac neighborhood, the street of 7. Juli (Se¢er mala neighborhood) and the area
around the Medical Secondary School.
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4. CONCLUSION

The hazard component of UHI risk involves the assessment of LST data. In urban areas,
more precise identification of UHI hotspots enables the application of targeted mitigation
measures. In this research, we applied a machine leaming - RF downscaling method to
enhance the spatial resolution of LST data (from 1 km to 250 m), using MODIS/Terra Land
Surface imagery for the central City Municipality of Ni§, Serbia, during a heat wave event
recorded in 2024. The following can be concluded:

1. Among the seven predictors considered in the LST prediction models, the most
significant were NDVI, Building Height, and DEM; Aspect and Land Use were
moderately significant, while DHM and Hillshade had the least impact.

2. The established models demonstrated robust and consistent performance, with
MSE values remaining rather stable for mtry values greater than 2, regardless of
the examined number of trees and the maximum depth.

3. The achieved accuracy (RMSE = 0.854 °C) of the downscaled LST model - using
mtry = 6, 200 trees, and a maximum depth of 30 - outperforms similar studies
that applied the RF approach.

4. Five UHI hotspots were identified in the City Municipality of Medijana, providing
insights for urban planning and UHI effect mitigation. The enhanced-resolution
LST dataset can support stakeholders in identifying heat stress-prone areas and
implementing targeted adaptation interventions, such as green, blue and white
measures.

In future research, we aim to incorporate additional predictors into the RF downscaling model,
such as the Tropical Night Index, which is not only an indicator of UHI presence but is also
available in future climate projections. Because climate models offer long-term simulations of
this parameter until the end of the 21st century, it will be possible to assess potential shifts in
UHI locations under various urban development scenarios.
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