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Abstract  

This study examines the effectiveness of three regression methods – multiple linear, 
random forest, and log-linear (gamma) when applied to annual maximum daily precipitation 
data sets to fill in missing values. Gridded observations data of extreme daily precipitation, 
sourced from the Digital Climate Atlas of Serbia platform, were utilized for this study in the 
area of Niš. The dataset, which is complete for the period 1950–2020, was intentionally 
modified to simulate missing data. These artificial gaps, or 'holes,' were introduced 
systematically at the beginning, end, and randomly selected locations within the dataset. 
The data omission was carried out incrementally at rates of 5%, 10%, 15%, and 20%. The 
performance of the methods for completing incomplete series was evaluated in terms of 
standard metrics like the coefficient of determination (R²), root mean square error (RMSE), 
and mean absolute error (MAE). The results indicated a commendable performance across 
all evaluated methods, even when addressing 20% missing data. Notably, multiple linear 
regression emerged as the most effective technique among those tested. 
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1. INTRODUCTION   

Effective planning and management of water resources rely on the availability of reliable 

and precise precipitation data collected from meteorological stations [1]. Precipitation data is 

commonly gathered using rainfall gauges, which are regarded as the primary source of 

precipitation observations. These instruments provide direct measurements of precipitation 

at specific locations [2, 3]. However, precipitation data is frequently incomplete. The 

incompleteness of precipitation data may be due to instrument failure, measurement errors, 

or other factors. The presence of missing data in rainfall time series can significantly impact 

the accuracy of statistical analyses [4]. A common approach to address this issue is to discard 

the years or periods that contain missing data. However, this strategy may lead to significantly 

reduced sample sizes or can obstruct an accurate characterization of the upper tail of the 

distribution of the random variable [5]. An alternative approach involves supplementing the 

target station with data from appropriate nearby stations.  

Various techniques have been developed to estimate and reconstruct missing data, which 

can be generally divided into three categories: empirical methods, statistical approaches, and 

function-fitting techniques [6]. The methods described for addressing missing data aim to 

enhance the accuracy and reliability of hydrological models.  Techniques such as the regional 

weighting method, linear regression, Kriging, etc., are used in practice to fill in monthly and 

annual rainfall data [7]. However, due to the significant spatial variability of extreme 

precipitation, such techniques are not recommended for filling daily and sub-daily 

precipitation [6]. Since daily and sub-daily precipitation data serve as inputs for hydrological 

models, selecting an appropriate method for estimating missing values is crucial. Previous 

research has discussed the use of multiple linear regression [8], simple substitution [9], the 

Theil method [10], and machine-learning algorithms [11, 12] for this purpose.  

This study evaluates the effectiveness of three methods for filling artificially induced gaps 

in annual maximum daily precipitation data from the period 1950 to 2020. The methodologies 

under investigation include Multiple Linear Regression (MLR), Random Forest (RF), and Log-

Linear Gamma (LLG) regression techniques. Gridded data representing the annual 

maximum daily precipitation at nine locations across the city of Niš, sourced from the Digital 

Climate Atlas of Serbia, were utilized. 

2. MATERIALS AND METHODS 

This chapter defines the specific location of the investigation and provides a detailed 

explanation of the techniques used to fill the data series. It also describes how the so-called 

"holes" were intentionally introduced into the complete sequence of daily precipitation 

records. Validation was conducted by comparing the reconstructed values with the actual 

omitted precipitation data. 

Due to the insufficient density of observation stations with available daily precipitation 

data, a suitability test for filling in incomplete sequences was conducted using a grid network 

sourced from the Digital Climate Atlas of Serbia [13]. 

2.1. Study Area and Data 

Niš, one of the oldest cities in the Balkans, is located in southern Serbia and serves as an 

important economic, cultural, and geographical hub. Positioned at the crossroads of Central 
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and Southeast Europe, Niš has historically been a gateway between Eastern and Western 

civilizations. The city lies at 43°19′N latitude and 21°54′E longitude, with an elevation 

averaging 194 meters above sea level. The following figure (Figure 1) includes the location 

of the research area on the territory of the Republic of Serbia, with a detailed overview of the 

positions of 9 significant points from the gridded observations of the Digital Climate Atlas of 

Serbia, which are located over the city of Niš. 

 
Figure 1. Study area with eight regression and one target point gained from the Digital 

Climate Atlas of Serbia 

Gridded meteorology refers to meteorological data that is organized into a structured grid 

format, rather than being based solely on individual weather station observations. This 

approach allows for consistent spatial and temporal coverage, making it useful for climate 

modeling, weather forecasting, and environmental research [14]. 

The grid of the atlas was formed based on the measured climatic variables at 

meteorological and climatological stations in Serbia, which were then interpolated to a regular 

grid of points, with a horizontal distribution of ~10x10 km. Annual maximum daily precipitation 

data in the period 1950-2020 were used from the climate atlas of Serbia. An "intervention" 

was conducted on the complete dataset, resulting in the removal of 5 %, 10%, 15%, and 20% 

of the data from the beginning, from the end, and in random places. A total of 36 incomplete 

data series were obtained in this manner. Such an intervention was carried out only at one 

(central/target) measurement point, to further establish a regression based on intact data 

from the 8 nearby points. Used regression techniques are detailed below. 
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2.2. Regression methods 

2.2.1. Multiple Linear Regression 

MLR is a statistical method used to analyze the relationship between a dependent 

variable and two or more independent variables. It extends simple linear regression, which 

only deals with one independent variable, to handle multiple predictors [1, 15]. The missing 

data (�i) is estimated from the following equation: 

�� = �� + ∑ (����)�
���                                                                                          (1) 

where �i is the estimated rainfall data, Xi is the observed rainfall value of the ith 

surrounding point, and �i, �1, …, �n are the regression coefficients. 

2.2.2. Random Forest Regression 

Among its many uses, RF is a reliable technique for regression, prediction, and 

classification. By sampling the training data at random, it builds several decision trees and 

uses a bagging process to determine which trees produce the best predictions [16]. In 2001, 

Breiman presented an expansion of this algorithm [17].  

RF works well for producing predictive models for tasks involving both regression and 

classification. Binary decision trees, specifically Classification and Regression Trees (CART), 

are the foundation of this approach. Software XLstat was utilized to carry out RF regression 

[18]. The number of trees, the mtry value, and particular tree parameters like minimum node 

size, minimum child size, and maximum depth are among the parameters that XLstat needs 

to know. Longer computation times result from using more trees, even though this improves 

model stability. To lessen the chance of overfitting, the maximum depth parameter limits the 

trees' complexity. When building individual decision trees, the mtry parameter indicates how 

many features are chosen at random at each split. 

 The following parameter values were used: 

• Forest parameters: Sampling (Random with replacement); Method (Random 

Input); Sample size (71); Number of trees (300), 

• Stop conditions: Construction time (300); Convergence (50), 

• Tree parameters: minimum node size (2); minimum son size (1); maximum depth 

(30); mtry (3); CP (0,0001). 

2.2.3. Log-Linear (Gamma) Regression 

Log-linear regression is one of the specialized cases of generalized linear models (GLM). 

The 'linear' in the name means the model's presumption of a linear relationship between the 

input and output variables. And 'log' refers to the model's use of a logarithmic transformation 

of the input data before fitting it into a linear equation.  GLM offers considerable flexibility in 

assuming the distribution of ‘errors’ about the mean response. They handle response 

variables that follow different distributions, and in this case, the gamma-distributed data is 

used. Applying a logarithmic transformation to variables in a regression model is a widely 

embraced technique for addressing scenarios where a non-linear relationship intricately 

intertwines the independent and dependent variables. This method allows for a more 

coherent interpretation of the data, enabling analysts to uncover patterns that might otherwise 

remain obscured. By re-scaling the variables, one can often reveal a clearer, more linear 

relationship, transforming complex interactions into more manageable and visually 
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interpretable forms [19]. This transformation accommodates nonlinear relationships in the 

data, resulting in a more accurate prediction of those relationships. In the log-linear model 

(2), the literal interpretation of the estimated coefficient �i is that a one-unit increase in X will 

produce an expected increase in log Y of �i units. In terms of Y itself, this means that the 

expected value of Y is multiplied by ebi. 

����� = �� + ∑ (�������)�
���                                                                               (2) 

2.3. Methods Performance 

The efficiency of the filling data was compared using three different error indices: mean 

absolute error (MAE), root mean square error (RMSE), and coefficient of determination R2. 

The error measures were used to compare the estimations with the observed values. The 

three error indices are given as follows: 

• Mean absolute error (MAE) 

The Mean Absolute Error (MAE) stands out as a crucial metric in the realm of model 

evaluations, revered for its clarity in quantifying estimation errors. This powerful measure 

provides straightforward insight into the magnitude of errors, allowing researchers and 

analysts to gauge the precision of their predictions. As highlighted by Willmott and colleagues 

in 2009, the MAE is a recommended method for assessing accuracy [20]. The MAE is 

computed using the following equation: 

��� =  
�

�
∑ ���� − ����

���                                                                                       (3) 

where ��� is the observed value of the rainfall data from the target point. 

• Root mean square error (RMSE) 

RMSE measures the difference between the estimated and observed values. The best 

method gives the lowest computed value of the RMSE. The RMSE value varies from 0 to 

+∞. The RMSE is computed using the following equation: 

���� =  �∑
(������)�

�
�
���                                                                                      (4) 

• Coefficient of determination (R2) 

The coefficient of determination, denoted as R2, is a statistical measure used in 

regression analysis to assess how well a model explains the variability of the dependent 

variable. The R2 is computed using the following equation: 

�� =
∑ (��� ���)·(������ )�

���

�∑ (��� ���)�·∑ (������ )��
���

�
���

                                                                              (5) 

where ��
� and ��are the average precipitation values of estimated and observed data, 

respectively. 
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3. RESULTS AND DISCUSSION 

The following table (Table 1) summarizes the values of error indicators (RMSE, MAE, and 

R2) for all three applied regression techniques and all considered incomplete sets of 

precipitation data, with omission from the beginning (B), end (E), and in random (R) places 

along strings. 

Table 1. Values of different error indices: mean absolute error (MAE), root mean square 
error (RMSE), and coefficient of determination R2 for three different regression methods 
and different types of omission datasets 

Rate of 
omission 

Perf. 
metrics 

Regression method 

MLR RF LLG 

Omission 

B E R B E R B E R 

5% 

RMSE 1.42 0.82 0.89 1.51 2.50 4.92 1.45 2.33 1.70 

MAE 1.16 0.68 0.70 1.35 2.27 3.19 1.14 2.26 1.56 

R2 0.94 1.00 0.99 0.90 0.91 0.99 0.92 0.99 0.98 

10% 

RMSE 1.31 1.18 0.79 5.32 4.41 1.14 10.68 5.23 10.37 

MAE 1.01 1.00 0.61 3.33 3.91 0.81 4.92 3.66 5.35 

R2 0.99 1.00 0.99 0.94 0.92 0.93 0.98 0.94 0.94 

15% 

RMSE 1.19 1.01 0.90 4.62 4.15 3.06 7.87 4.12 4.38 

MAE 0.96 0.84 0.74 2.98 3.20 2.16 3.78 2.49 2.52 

R2 0.99 0.99 0.99 0.94 0.90 0.96 0.96 0.94 0.96 

20% 

RMSE 1.03 0.89 0.66 4.75 3.59 3.31 9.85 3.78 7.05 

MAE 0.74 0.72 0.59 3.33 2.62 2.15 5.13 2.38 2.90 

R2 1.00 0.99 0.99 0.95 0.91 0.93 0.89 0.94 0.95 

 
From the previous table, it can be seen following: 

• The largest errors are obtained using the LLG model, where RMSE goes up to 

10.68 mm, 

• The smallest errors are obtained using MLR for all considered cases, 

• RF regression gave satisfactory results, with the biggest RMSE value of 5.32 

mm, 

• The error values did not strictly increase as the number of missing data in the 

series increased, moreover, the smallest errors were registered in the case when 

multiple linear regression was used over the series with 20% of missing data. 
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The computational results showed that classical statistical methods such as MLR 

performed excellently, as also noted by Sattari M.T. and Kusiak A. in their work [1], as well 

as Hasanpour Kashani, M., and Dinpashoh, Y. in their study [21]. 

In the following Table 2, a correlation matrix between the included regression (X1-X8) and 

target points (T) is shown, for the case where the smaller errors are found. 

Table 2. Correlation matrix of the nine considered locations 

  X1 X2 X3 X4 X5 X6 X7 X8 T 

X1 1 0.981 0.963 0.977 0.874 0.964 0.926 0.241 0.885 

X2 0.981 1 0.994 0.992 0.939 0.976 0.966 0.274 0.945 

X3 0.963 0.994 1 0.983 0.951 0.973 0.970 0.270 0.951 

X4 0.977 0.992 0.983 1 0.941 0.988 0.979 0.256 0.952 

X5 0.874 0.939 0.951 0.941 1 0.932 0.969 0.269 0.993 

X6 0.964 0.976 0.973 0.988 0.932 1 0.985 0.255 0.940 

X7 0.926 0.966 0.970 0.979 0.969 0.985 1 0.268 0.973 

X8 0.241 0.274 0.270 0.256 0.269 0.255 0.268 1 0.260 

T 0.885 0.945 0.951 0.952 0.993 0.940 0.973 0.260 1 

It can be seen that all but the last eighth point have a strong correlation with each other.  

Standardized coefficients, also known as beta coefficients, are used in regression 

analysis to compare the relative importance of predictor variables. They are calculated by 

standardizing the data so that all variables have a mean of 0 and a standard deviation of 1. 

This allows for direct comparison of the effects of different variables, regardless of their 

original units of measurement. In multiple regression, standardized coefficients help 

determine which independent variables have the greatest impact on the dependent variable. 

A higher absolute value of a standardized coefficient indicates a stronger influence on the 

outcome [22]. The following figure (Figure 2) shows the values of the standardized 

coefficients for the eight predictors used with a 95% confidence interval. Blocks shaded in a 

lighter blue represent locations with a more significant influence in the regression model, 

while darker shades indicate a smaller influence. 

 
Figure 2. Values of the standardized coefficients of predictors  

with a 95% confidence interval 
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From the figure above, it can be seen that X5 has the strongest influence (0.78), because 

it has the highest standardized coefficient, meaning it contributes the most to predicting the 

dependent variable. Conversely, X7 and X8 have the lowest coefficients - their impact on the 

prediction is minimal.  

4. CONCLUSION 

In the study reported in this paper, the annual maximum daily precipitation data at the 

nine locations from a grid network sourced from the Digital Climate Atlas of Serbia are 

considered. Each point/location contains complete data strings, with intentional holes 

introduced at the central point in various locations along the string, resulting in 36 new strings 

for this point. Three different methods were applied to fill artificially induced missing data. The 

results demonstrated that the MLR method is well-suited for estimating missing precipitation 

data, even in cases where 20% of the data is missing. RF had satisfactory but not as good 

results as MLR, while LLG indicated that in some cases, it can give a weaker forecast of 

potential values of extreme precipitation. This work represents a respectable example of how 

incomplete precipitation datasets can be supplemented, indicating that a more conservative 

approach is potentially better than newer techniques involving the application of artificial 

intelligence and machine learning to solve such problems. 
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