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Abstract  

Koenigs meshes should be more explored in the field of architectural design due to their 
various fabrication efficiency factors for doubly curved grid-shells. Beside being planar 
quad meshes (PQ-meshes) they have additional property of duality and are closely linked 
to graphical statics: their diagonals and those of their dual mesh represent form and force 
diagrams in equilibrium under a normal unit load. These meshes also fulfill essential 
geometric criteria such as planar panels suitable for glass cladding. Special subclasses—
like discrete isothermic surfaces and discrete minimal surfaces—offer additional 
advantages, including quad blocks with planar lateral sides (zero geometric torsion) and 
constant edge offsets. The latter allows for simplified fabrication using straight, discrete 
strips. Koenigs meshes remain underutilized in architectural practice. This research 
develops design morphology techniques and parametric tools that preserve their geometric 
properties, and introduces computational methods for constructing and exploring designs 
with these networks. The study offers new design strategies of dual meshes and presents 
practical workflows for implementing Koenigs nets in architectural applications. 
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1. INTRODUCTION  

Koenigs meshes are discrete analog of Koenings patches with specific fabrication and 

structural advantages, making them highly relevant in grid-shell architecture. They represent 

planar quad meshes (PQ-meshes) that also support duality, making them highly relevant for 

construction applications. Their structural significance arises from their direct relationship with 

their dual meshes, particularly in graphical statics, where the diagonals (of the quads) of a 

Koenigs mesh and its dual represent the form and force diagram of one another. This 

property enables them to reach static equilibrium under an external normal unit load [1, 2]. 

Additionally, they satisfy essential geometric criteria for design, including planar quad faces, 

which facilitate prefabrication of their panels on the flat platform or glass cladding. 

Furthermore, the intersecting diagonals points of adjacent faces produce planar panels, 

presenting a promising solution as a second option for glass covering, when the primary 

construction is derived from the diagonals. 

Within the scope of Koenigs meshes class is their subclass of discrete Isothermic 

Surfaces (or IS-meshes) which further contain discrete Minimal Surfaces (or MS-meshes). 

They bring additional fabrication advantages to the construction elements such as: „square-

like“ proportionality of the panels, zero geometric torsion (face sides without twisting) [1], and 

in the case of discrete minimal surfaces also: constant edges offset blocks whose planar 

lateral sides unfold to a straight band. These properties are very rare in the doubly curved 

grid-shells, but enable simpler fabrication techniques with the possibility of material savings 

during production since the elements can be produced by cutting and folding parallel stripes 

of material [3].  

While their methods of construction and properties are known among mathematicians 

and researchers within discrete differential geometry [2], [4–6], they have not been widely 

explored for applications in the design of doubly curved grid-shells. For the first time, this 

research applies transformation principles that preserve the geometric properties of Koenigs 

meshes to broaden the range of design variations within pre-rationalization design approch. 

The main contribution of this paper is developing the tools and algorithms for constructing 

these meshes is based on defined steps, driven from geometry theory, within parametric 

modeling.  

2. GEOMETRY DEFINITIONS 

In this section we will talk about geometry definitions and main properties of the Koenigs 

meshes as well as their subclasses of IS-meshes and MS-meshes. The theory from this 

section will be used for development of the design tool for K-meshes grid-shells. 

2.1. Koenigs meshes (K-meshes) 

In this paper,  by mesh we mean a quad mesh that is, a 2-dimensional array of points 

in the standard 3-dimensional Euclidean space. When the faces of the mesh are planar we 

call this a Planar Quad mesh (or PQ-mesh), note that all the meshes studied here are PQ. 

Next, a Koenigs mesh (K-mesh) is a PQ-mesh that admits a dual K-mesh. To understand 

this, we begin by defining the dual of a quad. So let (A,B,C,D) be a starting quad, then, its 

dual transform, denoted (A*,B*,C*,D*), is a quad such that all the edges are parallel to the 

initial quad while opposite diagonals are parallel (Figure 1).   
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Figure 1. a) Elementary quad b) Its dual transformation; c) Dual of four arbitrary quads 

d) Closure condition on K-mesh  

The dual transform of a quad defined above is the central operation that we will use here. 

We can then say, that a K-mesh is PQ-mesh that admits a dual mesh, which is another mesh 

where the corresponding elementary quads are related by the dual transform described. This 

is intuitive enough; however, it does not tell us how to construct a K-mesh. A natural way to 

explore, is to start by a PQ-mesh and apply the dual transform to each of its quads. The result 

set of quads will not necessarily close together properly into a neat mesh (Figure 1c). For this 

to happen we have to impose another condition on the initial PQ-mesh, that we call the 

closure condition. To this end, given a point with its four adjacent planar faces, we define the 

distances (on the diagonals) denoted by α�, α�,… as seen in Figure 1d. Now the closure 

condition is that at every point the relation (1) is satisfied. Intuitively, it can be said that the 

diamond net around every point has to be closed. For further details and proof, see [2]. 

It then follows, that a K-mesh can be defined as a mesh that satisfies: 

• Planarity of faces (being PQ-mesh) 

• Closure condition (admitting a dual mesh). 
β�

α�

⋅
β�

α�

⋅
β�

α�

⋅
β�

α�

= 1 (1) 

Interesting and unique geometric property of K-meshes beyond planar elementary 

quadrilaterals is that the intersection points of the diagonals that belong to four adjacent 

quadrilaterals are coplanar [5]. Additionally, Koenigs meshes are projectively invariant, 

meaning their two fundamental properties (planarity and closure condition), remain 

unchanged under projective transformations (PT). In intuitive design exploration, the PT can 

be seen as a transformation that stretches the mesh in different directions while preserving 

face planarity and keeping the diamond nets around each point closed. This characteristic 

will be the basis of their construction in this paper. Now, PT (in dimension 3) can be 

interpreted as an operation on the standard Euclidean space given by the mapping: 

(�′, �′, �′) = �
��� +  ��� + ��� + �� 

��� + ��� + ��� + ��
,
��� +  ��� + ��� + �� 

��� +  ��� + ��� + ��
,

��� +  ��� + ��� + �� 

��� + ��� + ��� + ��
� (2) 

 

where the 4x4 matrix whose rows are given by the input parameters a1,a2,a3,a4; b1,b2,b3,b4; 

c1,c2,c3,c4, and d1,d2,d3,d4 has a non-zero determinant. These are used to generate shape 

variations. Particulary this equasion is used to transform the coordinates of starting points 

(�, �, �) of the mesh into a new set of points of the gained mesh with coordinates (�’, �’, �’). 

2.2. Discrete Isothermic surfaces (IS-meshes) 

IS-meshes are in fact a specialization of K-meshes where we require more constrains on 

the meshes. More precisely, we first require that quads of our PQ-mesh to be Cyclic, that 

means that all the vertices are co-circular (lie on the same circle), we call such a mesh a 

circular mesh. Further, we require the circlular mesh to satisfy what is called the Cross- Ratios 
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condition. This means that the lengths of the four edges of adjacent quads must satisfy a 

specific relationship. To understand that, we recall that the cross-ratio of a cyclic quad (A, B, 

C, D) is defined by the relations �
|��|

|��|
� . �

|��|

|��|
�, where | | means the length of the edge. Given 

a point of a circular mesh and its four adjacent faces, let q1, q2, q3, q4 be the cross- ratios of 

these faces, the Cross-Ratios condition is given by the relation:  

�� ⋅ �� = �� ⋅ �� (3) 

An IS-mesh is thus defined as a mesh satisfying: 

• Circularity (being circular mesh) 

• Cross-Ratio condition [5]. 

 

 
Figure 2. Cross-Ratios of four adjacent faces at a point 

Being in particular a K-mesh, an IS-mesh naturally admits a dual mesh, using the dual 

transform of its elementary quads as seen above. However, in the case of IS-mesh this dual 

transform will be called a Christoffel dual transform, reflecting its origin in smooth classical 

setting. Furthermore, the two fundamental properties of IS-meshes are not invariant (they 

change) under PT however, they are invariant under Mobius transformations (MT), which will 

be explained later on. Finally, it is known that being a circular mesh is equivalent to being a 

Vertex-Offset mesh (VO-mesh) [1], [7], [8]. This means that their neibouring discrete normals 

are coplanar which is a significant fabrication advantage for modular faces and nodal 

construction elements. 

2.3. Discrete minimal surfaces 

MS-meshes belong to a subclass of IS-meshes that is called s-IS-meshes. These are 

defined as collection of vertices one black (b-vert) and two types of whites (c-vert) and (s-

vert). Moreover, they satisfy the following conditions:  

• the four b-vertices surrounding a c-vertex are co-circular (lie in same circle) 

• the four b-vertices surrounding a s-vertex are co-spherical (lie in same sphere) 

• these circles and spheres intersect orthogonally (at the b-vertices). 
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Figure 3. Properties of discrete minimal surface and Koebe 

We will call the above conditions the s-IS-mesh condition, and thus a mesh satisfying  

this will be called an s-IS-mesh, and we index only the s-vertices as our mesh points. 

Furthermore, it can be observed that the four s-vertices surrounding a c-vertex are co-planar, 

and their face has inscribed circle (centered at the c-vertex and passing through the b-

vertices), as seen in Figure 3a) [6]. Now, if we require that the s-vertices, are co-planar with 

their surrounding c-vertices (before they were co-spherical), then we observe that the four 

adjacent faces at every s-vertex take the saddle-like configuration. We call this the Saddle 

condition.  

We can thus define an MS-mesh as a mesh that satisfies the two conditions: 

• s-IS-mesh condition (being s-IS-mesh) 

• Saddle condition (every white vertex is co-planar with its white neighbors). 

The s-IS-mesh condition is invariant (does not change) under MT while the Saddle 

condition is not. Now, as the others, MS-mesh admits a Christoffel dual mesh, which is known 

to be an s-IS-mesh on the sphere—that is, a Koebe mesh. We will use exactly this property 

to construct MS-mesh. Then lets see what is a Koebe mesh. 

2.1.1. Koebe polyhedral and edge offset – EO mesh  

Note that the plane obtained at the s-vertex with its surrounding c-vertices is the tangent 

plane to the MS-mesh and the normal to this plane is the discrete normal at the s-vertex 

(Figure 3a). When transformed into its dual, it can be seen that its edges are tangent to the 

unit sphere at the transforms of the b-vertices, while the transforms of the s-vertices lie 

outside the sphere. Such a mesh is called a Koebe mesh [9]. It follows that each face (defined 

by the transformed of the s-vertices) has an inscribed circle which is precisely the intersection 

of the face in question and the sphere (Figure 4). So far, we explained that the Christoffel 

dual of an MS-mesh is a Koebe mesh, however we want to do the opposite construction. 

Namely, constructing a Koebe mesh then getting an MS-mesh by taking the Christoffel dual. 

To this end, we recall that a Koebe mesh can be directly constructed from the two orthogonal 

Circle Packings (CP) on the unit sphere, which in turn give us MS-mesh by applying 

Christoffel dual transform [4]. In this paper, we construct the two orthogonal CP by 

constructing them in the plane (the (�, �) domain) then send them to the unit sphere using 

the inverse of the stereographic projection (which is known to preserve circles), denoted by 

�� and given by:  

��(�, �) =  �
2�

��  + ��  +  1 
,

2�

��  + ��  +  1 
,

��  + ��  −  1

��  + ��  +  1 
� (4) 

Secondly, we can pre-compose �� with �, the inversion in a circle of radius �, or in general  
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with ψ, an MT (in the Complex plane), given respectively by: 

�(�, �) = �
��

�� + �� 
� (�, �)     ���ℎ � ��� − ���� (5) 

ψ(T)  =  
����

����
   with  �  =  �  +  ��   and �, �, �, � such that �� − �� non − zero (6) 

 

The resulting conformal map from these pre-compositions (�� ∘  � , �� ∘  �) will be 

denoted � (parametrization sending the circle packing pattern on the sphere). Furthermore, 

we can also post-compose these with an MT (in 3-dim.). The MT can be formulated as a 

combination of scaling, translation and inversion. The third one can be intuitively described 

as a motion of turning the mesh “inside out” through a sphere or a plane. It keeps the 

geometry of circles and spheres as well as angles. That is why it can be implemented on IS-

meshes without changing their properties. Also, it can be implemented on MS-meshes, 

where only the first condition is kept, so we get s-IS-mesh from MS.   

Despite being somewhat less intuitive a MT can be more conveniently defined as a 5x5 

matrix �. whose generators are the matrices denoted by �, �, �, �.  These are themselves 

parameterized respectively by �, �, �, � varying between −1 and 1 (cf. digital tool). The 

reason for the 5 dimensions, comes from the rather abstract realization of the Mobius 

transformations as Lorentz transformations preserving a light-cone in Minkowski space of 

dimension 5. The data of the transform is sent to and from this using stereographic projection 

in dimension 3. For more details about its construction see [10]. 

In order to construct a proper circle packing by using these parametrizations it is important 

to divide the parametric domain into squares which can have inscribed circles. This can be 

made by having the same �, � domain and dividing them by same number ��� = ���, or all 

values can be varied but by keeping the same step value (�� − ���� =  �� −  ����). After 

using the chosen combination of mapping we have the circles on the sphere. Since here we 

are looking at the quad subdivision, the four planes �� ,��, ��, �� of adjacent circles should 

intersect into one point � (Figure 4b). The intersection of the each of neighboring two planes 

gives us the tangent edges of the sphere. If repeated for the all four adjacent circles, we get 

all the vertices and edges of the Koebe mesh. 

 
Figure 4. Construction of Koebe polyhedra by using inversion in plane and inverse 

stereographic [11] 

Now that we showed how we can easily construct a Koebe mesh, we go back to its 

relation with MS-meshes. As mentioned above, a Koebe mesh is the discrete Gauss map of  
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an MS-mesh (which is also its Christoffel dual),  this means that this MS-mesh is Edge Offset 

(EO) mesh, i.e. admitting an offset mesh with constant edge to edge distance [1]. 

Similarly, as the Koebe mesh is as well an EO-mesh (since it is its own discrete Gauss 

map). In practical terms, if denote the Koebe mesh by M1 and its EO-mesh by M2, the 

corresponding edges are parallel (since at constant distance) and that if connect the 

corresponding b-vertices they all meet at the center (origin) of the unit sphere, as seen in 

Figure 5. Note that the b-vertices on M1 all lie on the unit sphere and are the points  

of tangency between it and the Koebe mesh. 

 
Figure 5. a) Koebe polyhedra M1; b) Four adjacent faces with tangent edges on the 

sphere M1 with its offset mesh M2 [11] 

2.1.2. Edge offset straight unfolding property 

It turns out that the MS-meshes (and negatively curved meshes in general) posses an 

extra property among the EO-meshes (i.e. meshes having their discrete Gauss maps as 

Koebe meshes). That is, the EO-block B obtained by connecting the EO-mesh with it offset, 

will have not only planar lateral sides (zero geometric torsion) but also the unfold into a 

straight strip, as seen in Figure 6. This is a direct consequence of the Saddle condition. To 

understand this intuitively, take a point on the MS-mesh and its four adjacent faces, and the 

Face Offset (FO) blocks (in red) from the Face normals constructed at these faces. It is then 

not so difficult to see that the saddle condition of the MS-mesh will force the common faces 

of four adjacent EO-blocks B to always lie between the faces of the FO-blocks. In particular, 

they (B) overlap in one direction and drift apart in the other, as seen in Figure 6 (middle). This 

in turn will induce a specific angle θ for each EO-block by which the planes of its lateral faces 

will rotate in and out in an alternating manner,  as seen in Figure 6 (right). This alternation of 

rotation is the cause of the lateral sides unfolding into a straight strip, as seen in Figure 6 

(right). This clearly provides us with a significant fabrication advantages, as the EO-blocks 

can be cut from straight pieces reducing cutting time and material loss.              

 
Figure 6. Example of the discrete MS mesh with the construction of its edge offset and 

proof of its straight unfolded sides [11]  
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3. DESIGN WORKFLOW AND MORPHOLOGY  

This section focuses on constructing a different Koenigs nets and its subclass by using 

appropriate transformations based on the geometry theory shown in Section 2 for expanding 

the design space of grid-shells using Koenigs meshes. The goal is to showcase the 

developed tool for parametric design of these meshes as well as give instructions on how to 

use the separate tools to generate one of the three mentioned mesh types. The setup of the 

construction is done by starting from the most rigid level and loosening the geometric 

properties with transformations, getting the other two.  

Three construction starting points are presented for designing grid-shells with dual 

meshes (Figure 7). The design process always begins with a square grid in the �, � plane, 

ensuring that the divisions remain square. After this, Mobius transformations are used to 

deform the grid in plane and inverse stereographic projection is applied to create two 

orthogonal circle packings on the sphere (giving rise to a Koebe mesh). In third case the 

conformal mapping of tangent circles is done directly on the sphere. All of the steps are 

divided into different Grasshopper (GH) components with their input parameters which 

makes possible to combine them easily and intuitively without the necessity of geometry 

theory from the Section 2 (Figure 7).  

Dual meshes are divided into three levels: Level I represent MS-mesh, obtained by 

applying Christoffel duality to the Koebe meshes. Level II is achieved by applying a Möbius 

transformation to Level I, which relaxes the minimal surface condition but retains the 

isothermic mesh properties. Level III can be achieved by applying a projective transformation 

to Level II, losing the circular mesh property but maintaining the Koenigs property. 

Alternatively, a projective transformation can be applied directly to Level I, resulting in Level 

III. Despite differences in geometric properties, all mesh levels are Koenigs, sharing the 

advantages of dual meshes. 

It is also important to emphasize that, except in the case of Level I, in the other two levels 

(II and III), it is possible to alternate the application of Möbius or projective transformations 

with Christoffel duality in order to obtain different forms of Level II or III (indicated in yellow 

and green in Figure 7). This property enables the generation of an unlimited number of 

different forms of dual meshes. In the continuation, the application of the strategies for 

constructing dual networks across the three levels is presented in following subsections. 

 
Figure 7. Strategies for constructing Koenigs meshes within three defined levels with 

their GH components and input parameters  
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3.1 Procedure for Constructing Discrete Minimal Surfaces – Level I 

The first subsection outlines the procedure for constructing Level I dual meshes – discrete 

minimal surfaces. Since this represents the level with most geometrical constrains, the 

fabrication advantages include not only planar panels, but also nearly orthogonal edges, 

square-like quad proportions, and straight unfoldable strips of all box elements. These 

properties remain unchanged regardless of the design steps taken using GH components. 

To construct them parametrically, the three conformal mapping cases are considered (Figure 

7), with corresponding design procedures. The first case involves applying an inversion to a 

20x20 square grid with the origin at (0,0,0) (Figure 8a), resulting in a deformed circle packing 

(Figure 8b). 

 
Figure 8. Level I mesh: Start with a square grid (u, v), apply circle inversion, then use 
inverse stereographic projection to create a Koebe mesh. Apply Christoffel duality to 

obtain the MS-mesh. 

Next, the inverse stereographic projection is applied sending the circle packing in the 

(�, �) domain to a circle packing in the sphere. The Koebe mesh is then constructed using 

these circles and the offset, defined by the normals at the tangent points of the mesh edges 

(Figure 8c). All Level I networks thus have an edge offset. The Christoffel duality procedure 

is then applied to create an MS-mesh of Enneper type [4] – Level I (Figure 8d). The discrete 

normals are used to construct its edge offset mesh (EO-mesh) of the Enneper mesh, which 

give rise to quad blocks, that unfold straight. This holds true for all the presented Level I cases 

(Figure 8h, Figure 9h, Figure 10h).  

 
Figure 9. Level I: Möbius map and inverse stereographic projection yielding discrete 

minimal surfaces via Christoffel duality. 
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This MS-mesh of Enneper type construction itself is not new, but this work focuses on 

developing tools and input parameters for experimenting with shell forms. By adjusting the 

position of the initial �, � plane relative to the inversion circle's center, the grid resolution, and 

the inversion circle's radius, different mesh forms can be generated. For example, shifting 

the starting plane from (0,0,0) to (-1,0,0) alters the circle packing (Figure 8d), Koebe mesh 

(Figure 8f), and final Enneper mesh form (Figure 8g). Increasing the grid rows stretches the 

mesh, revealing a larger mesh domain. These steps are implemented as components in the 

GH program, allowing users to modify the grid-shell form at each stage by changing the 

components input parameters.  

The second example of a discrete minimal surface is derived from a Möbius-type 

conformal mapping Ψ in the plane. Starting with the division of the u,v plane into the standard 

initial circle packing (Figure 9a), the mapping is applied, creating a deformed circle packing 

in �, � plane (Figure 9b). Using inverse stereographic projection, the circles are mapped onto 

the circles in the sphere, which give rise to in the Koebe mesh (Figure 9c). Applying Christoffel 

duality then generates the discrete minimal surface (Figure 9d). The Möbius transformation 

generator parameters �, �, �, and � control the mesh's form, with changes shown in Figure 

9d, e, and f.  

 
Figure 10. Level I: Construction via orthogonal plane strands and Christoffel duality for 

discrete minimal surfaces. 

The last example involves constructing the conformal parametrization of the sphere using 

inverse stereographic projection. A geometric intuition of the mapping No (inverse 

stereographic projection) is as follows. It is network (on the sphere) can be obtained as the 

intersections of two sets of planes passing through orthogonal lines �� and �� at the north 

pole (Figure 10a). Once again, to obtain circle packing, we divide the �, � domain into 

squares upon which we have the initial standard circle packing, which is then sent by �� to 

a circle packing on the sphere. Following the process, the Koebe mesh is constructed, and 

Christoffel duality is applied to form a discrete minimal surface (level I). If self-intersection 

occurs, an asymmetric section is extracted and adjusted symmetrically. A second variant is 

created by changing the domain parameters from the first GH component. To confirm that all 

surfaces derived from Christoffel duality are discrete minimal surfaces, the properties are 

checked according to geometry theory (cf. Section 2.3). 

3.2 Procedure for Constructing Isothermic Meshes – Level II 

This subsection focuses on constructing IS-meshes (Level II). In this case, the IS-mesh 

retains all fabrication advantages from the previous level, except for straight unfolding of box 
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edges, as it is no longer an EO-mesh. Planarity, near orthogonality, and square-like quad 

proportions still remain. These are obtained by applying Möbius transformation (MT) to Level 

I meshes. Doing that, they also retain the properties of s-IS mesh of the quads as the MT 

keeps the inscribed circles and spheres inhereted from discrete minimal surface. However, 

the saddle condition is no longer garantied. The first example is the MS-mesh of Enneper 

type (Level I), transformed using MT based on formulas from Section 2.1.1, with parameters 

� = 0.5, � = 0, � = −0.4, � = 0. The result is an s-Isothermic mesh with kept circular mesh 

which is not an MS-mesh (Figure 11b). Duality is verified by constructing panels via diagonals 

and checking their planarity, which is satisfied, as well as their cross-ratios condition (Figure 

11b, right detail). 

As mentioned, the isothermic (circular) mesh has constant vertex offset, when defining 

the shell thickness. This discrete normal at a vertex is defined as the avergage of the four 

face nomales of the adjacent quads meeting at this vertex. Planarity checks confirmed no 

geometric torsion, as expected for circular meshes. As mentioned above, this is an important 

fabrication advantage as these planar lateral faces are the basis for the beams in the grid-

shell.  

 

 
Figure 11. Level II Isothermic mesh variants from Enneper type MS-mesh via Möbius 

transformations and Christoffel duality. 

To demonstrate the design tool, alternating Christoffel duality and Möbius transformation 

were applied, generating two more mesh variants (Figure 11c, d), with new MT parameters: 

� = 0, � = 0, � = 0.8, � = 0. A second iteration of the same principle was applied to a 

discrete minimal surface generated using a Möbius transform (in the plane), then applying 

the process described above (Figure 12a). To reach level II, a Möbius transformation was 

applied with parameters � = 0.5, � = 0, � = −0.4, � = 0 (Figure 12b). The resulting mesh 

retained circular properties, and Koenigs mesh properties were applied to generate (green) 

panels constructed along white diagonals that are also planar and therefore can be also 

fabricated as flat secondary covering (Figure 12b). The main (purple) panels are also planar, 

satisfy closure condition and therefore duality. Offset points were generated as before, 

confirming absence of geometric torsion. 
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Figure 12. Level II Isothermic mesh variants from Christoffel duality and Möbius 

transformations. 

 
Figure 13. Level II Isothermic mesh variants from pencil of planes MS-mesh via Möbius 

transforms and Christoffel duality. 

Two additional examples demonstrate alternating Christoffel duality (Figure 12c) and 

Möbius transformations (� = 0, � = 0, � = 0.8, � = 0, Figure 12d), showing how different 

isothermic mesh variants can be generated through iterative application. This process can 

be repeated for further exploration using the input parameters of the GH components and 

apply them successively. 

The last case shows level I discrete minimal surfaces (from inverse stereographic 

projection) transformed into level II isothermic meshes (Figure 13a). The results are shown 

in Figure 13b–d. Parameter experiments revealed that: � and � increase asymmetry, � alters 

curvature, and � scales the grid-shell. The initial mesh position and size also influences the 

transformation effect—placing the mesh at (0,0,0) and scaling it properly is recommended. 

Like mentioned, separate Grasshopper components were created for Möbius 

transformations and Christoffel duality, allowing easy alternation and further shape 

exploration. Thanks to the developed approach and tools, no matter which mesh shape is 

obtained the fabrication properties of the quads are kept. However, to demonstrate the 
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strategy’s full potential, the next step is level III, defined purely by Koenigs meshes without 

additional properties. 

3.3. Construction Method of Koenigs Meshes – Level III 

Level III meshes, defined as Koenigs meshes, involve only the application of duality4 and 

lack properties of minimal or isothermic meshes. At level III, the mesh retains only quad 

planarity as a fabrication advanatge. Being the least constrained, they can be generated in 

various ways. Recall that level III contains all the other levels in it. More precisely, level I is 

contained in level II which is contained in level III. In other words, an MS-mesh is an IS-mesh 

and a K-mesh and any IS-mesh is also a K-mesh. But not the other way around. 

Koenigs meshes are preserved by projective transformation (PT), which maintains 

planarity but not IS-meshes nor MS-meshes. PT is applied by putting their formula presented 

above in Grasshopper as a component that recalculates point positions. Like with Möbius 

transformations, PT can alternate with duality to generate diverse mesh forms. Note that, 

since PT preserve planarity, the application of PT to IS-mesh including their planar later face 

(obtained by their normals) will result in K-meshes with later faces that are planar. However, 

the lines of intersections of these tranformed later faces are no longer functioning as vertex 

normals (recall K-meshes are not circular). This presents one additional fabrication 

advantage of also fabricating boxes from PQ strips (but not straight like in MS-mesh).  

 
Figure 14. Koenigs mesh Level III variants via projective transformations and Christoffel 

duality from isothermic mesh from Figure 11d 

The first example begins with a Level II mesh created by alternating Möbius 

transformation and Christoffel duality. A projective transformation is applied (�� = 1.2, �� =

1.0, �� = 1.6, �� = 1.0) resulting in a Level III mesh. When parameters ��, ��, ��, and �� equal 

1.0 (others are 0), the mesh remains unchanged—serving as a starting point for gradual 

adjustments to observe shape changes. Applying duality afterwards yields a different mesh 

shape, while a second PT further deforms it, producing another Level III variant. Three more 

Koenigs mesh examples are constructed similarly. Initial meshes were chosen from prior 

                                                           
4 Note that we refer to it as Christoffel duality for IS and MS meshes, but simply as duality for Koenigs meshes—
following smooth geometry conventions, even though the discrete construction is identical – same GH 
component. 

537



International Conference SINARG 2025, Niš, 11-12 September 2025 

 
 

example types. Starting from either Level I or II, PT and duality is applied iteratively using GH 

components and its input parameters to produce various Level III mesh forms. 

In each example, the planar condition of panels and absence of geometric torsion were 

checked as well as planarity of the secondary mesh constructed by intersection of diagonals, 

which are both crucial fabrication benefits of Koenigs meshes. While planarity is naturally 

ensured by the projective transformation (PT). It is crucial to treat the initial mesh and its offset 

carefully when applying PT to an isothermic mesh, as was explained in the previous 

paragraph, namely the PT sends two (vertex) offsets of IS-meshes to two K-meshes that are 

not themselves offsets in the strict term (as the circularity is lost). Now, applying further a 

Chrsitoffel dual transform will further exacerbate the situation as the planarity of these later 

faces will be lost as well. To summarize, in dealing with purely K-meshes the notion of an 

offset mesh is not as clear as it is in IS-meshes (with their notion of Vertex Offset) or the MS-

meshes (with their notion of Edge Offset).  Thus, for K-meshes, we use the discrete normal 

at a vertex as the avergage of the four face nomales of the adjacent quads meeting at this 

vertex, checking if the resulting faces have no geometric torsion for the given offset, which 

turned out to be the case in all showcased examples. 

 

 
Figure 15. Koenigs mesh Level III variants from discrete minimal surface via projective 

transformations and Christoffel duality from mesh at Figure 12a 

 
Figure 16. Koenigs mesh Level III variants from isothermic mesh via from Figure 13d 

projective transformations and Christoffel duality. 
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Experimenting with various PT input parameters revealed its effects differ significantly 

from those of the Möbius transformation. PT is more intuitive, as it involves affine 

transformations such as translation, scaling, rotation, reflection, and their combinations. 

Analyzing the examples, we found that parameters � and � stretch the mesh along the � and 

� axes, � stretches along the �-axis, and � scales the mesh. Like Möbius transformation, 

translating the global mesh in space will have a strong effect on the deformation of the 

outcome transformed mesh. In general, to better understand the morphological effect of the 

parameters it is advised to first keep the mesh in its standard position with respect to the 

origin before applying the transformation. 

4. CONCLUSION  

In this paper construction methods for Koenigs meshes in modular grid-shell design, were 

studied. Design strategies for discrete isothermic surfaces were formulated, a topic not 

extensively explored in architectural context. The same is done for the discrete minimal 

surfaces which possess special edge offset with straight unfolding quad blocks and square-

like element proportions, favorable for lots of fabrication techniques.    

Tools for designing these meshes were developed, categorized, and presented across 

three levels based on their fabrication constraints. Möbius and Projective transformations 

were then applied to preserve key geometric properties within each level while enabling 

limitless spatial variations. By following simple geometric rules, the developed methods and 

tools from different levels (I, II and III) can be used together by combining the developed GH 

components and trying out different input parameters. This flexibility increases design 

freedom and solutions within controlled local geometry of module which is one of main 

advantages of the developed strategy. The distinction between levels is crucial for the 

architectural implementation of the tools, as it should directly inform design decisions based 

on the available fabrication methods, as explained at the beginning of each subsection in 

Section 3. Also, developed tools help visualize the benefits and enable the intuitive 

implementation of fabrication-oriented design within pre-rationalization approach. They 

educate designers about these special mesh types that would otherwise be inaccessible and 

hard to implement. Algorithms were written in Grasshopper (GH) using a combination of 

available components and Python scripts with GH Python Remote. As separate components, 

these tools can be easily combined with each other and integrated with other Grasshopper 

components. This flexibility is crucial for adopting the framework across diverse architectural 

projects. Project-specific parameters—such as mesh orientation, scale, position, and 

element size or shape—can be defined by the designer and manipulated using the presented 

input parameters to suit the specific needs of each project.  
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