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Abstract

Previous research demonstrated a link between wood strength and brightness intensity
in X-ray images. Wood samples were subjected to compression testing along and across
the grain, with X-ray imaging performed on the same specimens before the mechanical
tests. Differences in the brightness of X-ray images of test specimens were cleary
noticeable, both in relation to the type of sampled wood and depending on the specific
alignment of X-ray beams relative to the direction of wood fibers in the test specimen.
Because wood has an anisotropic structural composition, it is expected that the X-ray
image of the tested sample would exhibit uneven brightness. Photometric analysis of the
X-ray image using computer software allows for assigning appropriate mechanical
properties to each point on the image via x, y, v parameters. However, since an individual
light point cannot represent the cumulative mechanical properties of the sampled test
specimen, it is clear that the task at hand also includes the need for homogenizing the X-
ray image. This is achievable through the program's three-dimensional approximation
capabilities. The creation of a tonal grayscale through image homogenization would enable
the alignment of mechanical strength parameters with brightness intensity values. This
process would effectively represent the overall mechanical potential of the wood sample
as a cumulative result, linking the homogenized brightness of the X-ray image with the
wood’s strength characteristics.
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1. INTRODUCTION

The concept for this research arose from the necessity of restoring wooden structures in
architectural objects of cultural and historical significance, where such work is governed by
specific regulations that require a specialized, non-invasive diagnostic approach. This
methodological framework is also recommended for the restoration and reconstruction of
other structures of potential heritage value, as each may be regarded as a monument to the
era in which it was created. The procedures for such restoration efforts are outlined in a
document adopted by ICOMOS during the General Assembly held in New Delhiin 2017. This
document details the principles for the conservation of wooden architectural heritage,
emphasizing the protection of their authenticity and structural integrity [1, 2].

Identifying the most stressed points of the structure and detecting signs of degradation
and damage in wood are essential prerequisites for developing an appropriate rehabilitation
plan. The non-destructive nature of the diagnostic process necessitates in situ examination.
Therefore, this study aimed to establish a reliable and easily applicable non-destructive
diagnostic method. The use of X-rays was considered for this purpose, as their orientation
can be aligned either parallel or perpendicular to the wood grain, analogous to laboratory-
based static mechanical testing [3, 4].

In our previous research involving X-ray application, tabulated strength values of
experimental wood samples were used, and it was confirmed that samples with higher
strength yielded brighter X-ray images, validating the analogy. The harmonization of
mechanical and radiographic parameters now required standardized mechanical calibration
of the wood specimens and computerized objectification of image brightness. This
methodology was supported by the capabilities of the OsiriX software, indicating its suitability
for the intended analysis [5, 6].

2. METHODOLOGY

X-ray testing was conducted on wood samples from diffuse-porous hardwoods—beech
(Fagus sylvatica) and poplar (Populus spp.); ring-porous hardwoods—black locust (Robinia
pseudoacacia) and oak (Quercus spp.); and softwoods—pine (Pinus spp.) and silver fir
(Abies alba), including a control group of samples from horse chestnut (Aesculus
hippocastanum). To ensure X-ray image homogenization, the specimens were cut to
dimensions of 20 x 20 x 40 mm. These samples were prepared similarly to those used in
standard compressive strength tests, with the longitudinal axis aligned with the grain
direction. The longitudinal plane intersecting the sample perpendicularly to its length was
parallel to the grain lines and considered the axial plane, while the planes intersecting the
two longitudinal sides at right angles represented the tangential and radial planes [4, 7, 8].

A second set of specimens had a transverse profile, with the axial plane intersecting the
longest dimension at a right angle. Testing was carried out using a medical-grade X-ray
machine operating within a range of 40—125 kV and 0.50-360 mA/s, similar to those used in
clinical diagnostics, where upper limits are typically 100 kV and 70 mA/s. Each sample set
was imaged using a current voltage of 37 kV and a strength of 70 mA/s. Following
radiography, standard compressive strength testing was also performed on the same
specimens.
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The brightest X-ray images were observed in the ring-porous hardwoods, which also
exhibited the highest measured compressive strength. Progressively lower brightness was
observed in the diffuse-porous hardwoods, with the lowest intensity seen in the softwood
samples. The brightest images in all test groups were obtained when X-rays were directed
along the axial plane; lower brightness was noted when X-rays were directed in the radial
direction, and the lowest when directed tangentially, corresponding proportionally to the
measured compressive strengths [9, 10, 11] (see Appendix).

3. RESULTS
3.1. Photometric Analysis:

Photometric analysis of the X-ray images represented the final step in the harmonization
of mechanical and radiographic parameters. This was performed using OsiriX software,
which is widely used in medical diagnostics. Its three main operational components—
Database Window, Viewer Window, and 3D Volume Rendering—enable the importation of
X-ray datasets, 2D/3D image viewing, and image manipulation within the study list
environment [6, 11, 12].

Of particular importance is the drop-down menu tool WW/WL (Window Width/Window
Level), used to adjust image brightness and contrast. The software’s CLUT (Color Look-Up
Table) module offers additional tools for selecting and adjusting color ranges, which can
enhance operational precision.

Due to the heterogeneous and anisotropic nature of wood—where mechanical properties
vary according to the direction of grain flow, leading to image brightness variability—the
software tools especially valuable for structural wood visualization include Orientation (for
spatial positioning relative to horizontal, frontal, and sagittal planes) and Thick Slab (for
deepening cross-sectional views) [13].

Key tools forimage homogenization and analysis include:

e ROI Tools (Region of Interest): Enable targeted image analysis.

e Repulsor Tool: For manipulating defined ROls.

e Selector Tool: Allows grayscale and color adjustments within selected ROls.

e Propagate Tool: Applies defined ROIs across all cross-sections.

e Region Growing: Expands areas around selected points, useful for diagnosing
damage and degradation in structural wood elements.

e Filters, particularly Convolution Filters in the 2D Viewer menu, used in bone
diagnostics, offer potential applicability here by producing 3D renderings with
enhanced contrast.

The 3D Volume Rendering module enables each point in the image to be assigned
corresponding mechanical properties based on its x, y, z coordinates. However, due to the
anisotropic nature of wood, a single point cannot fully represent the collective mechanical
properties of the entire specimen, even though dimensional uniformity helps in achieving a
certain level of homogenization.

Therefore, X-ray image brightness homogenization must ultimately rely on additional
operational tools such as Engine Tools, which support Ray Cast and 3D Texture
applications.
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Figure 1. X-ray of a log of wood

Figure 2. X-ray image through OsiriX software - example

4. CONCLUSION

The harmonization of mechanical and photometric parameters should result from a
comprehensive evaluation of the material’'s mechanical properties.This approach significantly
enhances the diagnostic reliability and practical value of the material evaluation process.
Future work could focus on refining this diagnostic method for larger structural elements and
validating it through in situ testing.
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APPENDIX

Figure 3. Mosaic.

/// 7

Flgure 5. Wood samples. 1.poplar; 2 beech; 3 pine; 4. oak 5.fir; 6. acacia.
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Table 1. Values of compressive stresses determined on test sample in the calibration

procedure of the stress-sound wave application method.
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Table 2. Values of bending stress determined on test samples in the calibration

procedure of the stress sound wave application method.
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