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Abstract 

This paper investigates the natural frequencies of square and rectangular cross-
laminated timber–concrete composite plates using the approximate analytical Rayleigh 
method and finite element analysis in Abaqus/Standard. Determining the natural 
frequency, as dynamic characteristic, is important for verifying the serviceability limit state 
regarding the vibration criteria of such composite plates. The Rayleigh method, as an 
approximate method, allows for quick result acquisition, while modeling in Abaqus provides 
more detailed and accurate information about the plates dynamic characteristics. By 
comparing the results of both approaches, this paper examines the advantages and 
disadvantages of each method, offering guidelines for practical engineering applications. 
The conclusion of this study is that the Rayleigh method provides results for plates of 
characteristic dimensions that are in good agreement with those obtained using the 
Abaqus/Standard software package, which was used as a benchmark. 
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1. INTRODUCTION 

For the design of floor plates, it is necessary to verify both the ultimate limit state and the 

serviceability limit state. Within the serviceability limit state, the vibration criterion, which is 

particularly relevant for composite plates, requires the determination of the natural frequency. 

According to the current Eurocode 5 regulations, in order to avoid more detailed dynamic 

analyses, the natural frequency of vibration of residential building timber floor systems must 

exceed 8 Hz [1]. In the case of composite timber-concrete floors, which represent an 

attractive alternative to conventional reinforced concrete plates due to their favorable 

properties, there is no explicit limit value for the natural frequency [2]. However, the same 

recommendations as for timber floors can be adopted. This is because a frequency below 8 

Hz can cause discomfort to occupants and potentially coincide with the walking frequency of 

residents, which could lead to resonance effect and compromise the stability of the floor 

system. 

Reinforced concrete plates have larger stiffness and mass, and typically exhibit higher 

natural frequencies compared to timber–concrete composite plates, making this condition 

generally insignificant. However, in the case of timber composite floor systems, which are 

relatively lightweight, the serviceability limit state with respect to vibrations may become the 

governing criterion for design. 

Various models have been developed to determine the dynamic behavior of structures. 

Depending on the approach, these models may include analytical, numerical, or semi-

numerical methods, which can be either exact or approximate. The most well-known among 

them are the Rayleigh method, Rayleigh-Ritz method, Galerkin method, Frobenius method, 

differential quadrature method, differential transformation method, finite difference method, 

and many others [3]. 

This paper analyzes the vibration frequencies of square and rectangular composite plates 

made of cross-laminated timber and concrete, obtained using two approaches: the Rayleigh 

method and finite element modeling in the software package "Abaqus" [4]. 

For the approximate analysis of the plate, the Kirchhoff plate theory (Classical Plate 

Theory, CPT) is used, which assumes that plane sections normal to the mid-surface before 

deformation remain plane and normal after deformation and neglects transverse shear 

deformation. 

In this study an ideal bonding condition between the layers of the composite plate is 

imposed: perfect adhesion is assumed and no slip occurs at the interfaces. This idealisation 

simplifies the model and permits direct application of the Rayleigh method to estimate the 

natural frequencies. It should be noted that this assumption represents an upper bound on 

the structural stiffness and therefore may slightly overestimate the natural frequencies 

compared to real assemblies where some interlayer slip occurs. Experimental investigations 

have shown that interface behaviour and connector stiffness influence the effective bending 

stiffness and can shift the natural frequencies of timber–concrete composite plates and 

beams [5, 6]. In particular, differences between fully composite and partially composite 

beams can reach about 10% in natural frequency [5]. 

The results obtained using both methods are compared, and conclusions are drawn 

regarding the validity of the Rayleigh method for calculating the vibration frequency of timber-

concrete composite plates. 
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2. GEOMETRIC AND MATERIAL PROPERTIES OF THE ANALYZED 
COMPOSITE PLATE 

The analyzed plate consists of five layers of cross-laminated timber, each 3 cm thick, with 

a concrete plate of 8 cm thickness placed above them, resulting in a total plate thickness of 

23 cm as shown in the Figure 1. Square plates with side lengths ranging from 4 m to 8 m in 

1 m increments, and rectangular plates with a fixed span of 3 m and widths varying from 4 m 

to 8 m, were analyzed. All plates were simply supported along all four edges to investigate 

the influence of side length and width on their natural frequencies. 

 
Figure 1. Cross section of composite plate  

The timber used for the laminates is of grade C24, and the corresponding mechanical 

properties are provided in the Table 1 [7]. 

Table 1. Mechanical Properties of C24 Grade Timber  

E1 

[MPa] 
E2 

[MPa] 
G12 

[MPa] 
G23 

[MPa] 
ν12  ν21 ρ 

[kg/m] 

11000  370  690  50  0.38 0.01278 420 

 

In the Table 1, E1 and E2 represent the Young's modulus in the principal directions, G12 

and G23 are the shear modulus ν12 and ν21 are the Poisson's ratios, while ρ represents the 

material density.  

The concrete used is of grade C25/30, and the corresponding mechanical properties are 

provided in Table 2. 

Table 2. Mechanical Properties of C25/30 concrete 

E 

[MPa] 
G 

[MPa] 
ν ρ 

[kg/m] 

31000 1292 0.20 2400 

3. RAYLEIGH’S METHOD 

Rayleigh’s method is an approximate analytical method used in structural dynamics to 

determine the natural frequencies of a system. It is based on the law of conservation of 

energy, which states that the sum of kinetic and potential energy remains constant. At the 

natural frequency, the ratio of maximum kinetic to potential energy is constant as follows: 

max

max

T
const

U
=                                                                                                                                                       (1) 

where 
maxU represents maximum potential energy and 

maxT  maximum kinetic energy. 
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For the composite plate, the maximum potential energy, depending on the transverse 

deflection of the plate w and the bending stiffness, 
ijD , is defined as [8]: 

2 2 2
2 2 2 2 2

max 11 12 22 662 2 2 2

1 w w w w w
U D 2D D 4D dxdy

2 x x y y x y

    
=   + + +

     

      
             

(2) 

while the maximum kinetic energy is represented in the form: 

2 2

max

1
T h w dxdy

2
=                                                                                                                (3) 

In the previous equation ω represents the natural frequency, while h denotes the total 

thickness of the composite plate. 

In laminate theory, 
ijD  represents the bending stiffness matrix and can be calculated as:  

( )
n

3 3

ijij k k 1
k

k 1

1
D Q h h

3
−

=

 = −                                                                                                       (4) 

where 
kh represents the distance between the geometric midpoint of the composite plate 

and the edge of each layer, as shown in Figure 2. 

 
Figure 2. Layer designations in the composite 

We define 
k

z as: 

k

k k 1(h h )
z

2

++
=                                                                                                       (5) 

Thus, the bending stiffness matrix is now given as [8]:  

2
k

3n
k

ijij k
k

k 1

t
D Q t z

12=

 
 = +   

 
                                                                                   (6)  
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where kt  represents thickness of k-th layer. 

The matrix ijQ  is the reduced stiffness matrix, obtained as:   

      
1 1

ijQ T Q R T R
− −

=                                                                                     (7) 

where  T  represents the transformation matrix,  R  is the Reuter's matrix and  Q  is 

the stiffness matrix, and the matrices are given as: 

 

2 2

2 2

2 2

cos sin 2cos sin

T sin cos 2cos sin

cos sin cos sin cos sin

    
 

=   −   
 −     −  

                                                  (8) 

 

1 0 0

R 0 1 0

0 0 2

 
 

=
 
  

                                                                                                     (9) 

 

( ) ( )

( ) ( )

1 2 12

12 21 12 21

1 12 2

12 21 12 21

12

E E
0

1 1

E E
Q 0

1 1

0 0 G

  
 −   −  
 
 

=  
−   −   

 
 
 

                                                        (10) 

The approximation of the transverse deflection function using Rayleigh method is given 

by [9]: 

w(x, y) A X(x) Y(y)=                                                                                       (11) 

where X  and Y  are the admissible functions that form the functional basis. They must 

satisfy the boundary conditions along the plate's contour. A  represents the amplitude 

coefficients that need to be determined.  

For the simply supported edges the characteristic function X  and Y  that satisfy the 

boundary conditions can be chosen as: 

x x x x
X(x) cosh cos (sinh sin )

a a a a

y y y y
Y(y) cosh cos (sinh sin )

b b b b

=  −  −   − 

=  −  −   − 

                                                                 (12) 

The coefficients λ (lambda) and γ (gamma) are determined using boundary conditions, 

requiring zero deflection along all edges of the plate and zero moment, where a and b 

represent the dimensions of the plate. [10] 

In order to obtain the natural frequency one can apply the law of conservation of energy 

[9]: 
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2
2U h

w dxdy 0
A 2 A

   
− =

                                                                                                     (13) 

For the analysis using the presented approximate analytical method, a MATLAB program 

code was developed, and the results are shown in Table 2 and Table 3. 

Table 2. Natural frequencies of square plates vibrations obtained using the Rayleigh 
method 

Dimensions of a 
square plate [m] 

lambda  
(λ) 

gamma  
(ϒ) 

f  
(Hz) 

4x4 1.676E-04 1.239E+00 28.48 

5x5 1.661E-04 1.219E+00 18.22 

6x6 1.655E-04 1.211E+00 12.66 

7x7 1.652E-04 1.208E+00 9.30 

8x8 1.651E-04 1.206E+00 7.12 

Table 3. Natural frequencies of rectangular plates vibrations obtained using the Rayleigh 
method 

Dimensions of a 
rectangular plate [m] 

lambda  
(λ) 

gamma  
(ϒ) 

f  
(Hz) 

3x4 1.701E-04 1.277E+00 39.40 

3x5 1.694E-04 1.267E+00 33.81 

3x6 1.692E-04 1.263E+00 30.60 

3x7 1.691E-04 1.261E+00 28.58 

3x8 1.691E-04 1.261E+00 27.23 

4.  MODELING IN ABAQUS SOFTWARE 

To compare the results obtained using the approximate Rayleigh method, a plate model 

was created in the „Abaqus” software package [4] and material properties specified for each 

layer were defined using the “Lamina” option. The plate was modeled as a 2D composite 

with six layers, each with its corresponding material properties.  Along the plate edges, pinned 

boundary conditions were applied: displacements in all three translational directions (U1, U2, 

U3) were restrained, while rotations were left free (Figure 3). 

 

Figure 3. Plate model 
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The model is meshed using linear quadrilateral shell elements with four nodes, linear 

interpolation and reduced integration (S4R). A mesh convergence study was performed by 

varying the global seed size from 0.05 m to 0.15 m. The resulting values of natural 

frequencies exhibited a minimal variation of only 0.22 %, proving that the model yields reliable 

results. Therefore, a global seed size of 0.15 m was adopted in this study to facilitate more 

efficient computation. 

The shape of the first natural mode for square plate 4x4m is shown in Figure 4. The 

corresponding mode shapes for rest square and rectangular plates exhibits a similar pattern 

and is therefore omitted for brevity. The vibration frequencies obtained for square plates of 

various dimensions are presented in Table 4, while those for rectangular plates are given in 

Table 5. 

 

Figure 4. First natural mode of square plate 4x4m 

Table 4. Natural frequencies obtained in Abaqus 

Dimensions of a square plate 
[m] 

f  
(Hz) 

4x4 30.15 

5x5 20.59 

6x6 14.66 

7x7 11.04 

8x8 8.59 

Table 5. Natural frequencies obtained in Abaqus 

Dimensions of a rectangular plate 
[m] 

f  
(Hz) 

3x4 39.39 

3x5 35.03 

3x6 32.94 

3x7 31.82 

3x8 31.16 
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5. RESULTS DISCUSSION 

The obtained results of frequencies for square and rectangular plates simply supported 

on all four edges were compared between the aproximate analytical analysis using the 

Rayleigh method of energy conservation in MATLAB and the finite element method using 

Abaqus software [4]. 

The data analysis shows that the frequencies obtained using the Rayleigh method are 

slightly lower compared to the values obtained in Abaqus. The difference is more pronounced 

for larger plate dimensions, while the deviations decrease as the dimensions decrease as 

shown in Table 6 and Table 7. 

Table 6. Comparison of the obtained results for square plates 

Dimensions of a 
square plates 
[m] 

Rayleigh f 
 [Hz] 

Abaqus f  
[Hz] 

Deviations  
[%] 

4x4 28.48 30.15 5.54 

5x5 18.22 20.59 11.51 

6x6 12.66 14.66 13.64 

7x7 9.30 11.04 15.76 

8x8 7.12 8.59 17.11 

Table 7. Comparison of the obtained results for rectangular plates 

Dimensions of a 
rectangular plates 
[m] 

Rayleigh f 
 [Hz] 

Abaqus f  
[Hz] 

Deviations  
[%] 

3x4 39.40 39.39 0.02 

3x5 33.81 35.03 3.61 

3x6 30.60 32.94 7.65 

3x7 28.58 31.82 11.34 

3x8 27.23 31.16 14.43 

 

These differences can be attributed to the assumptions used in the Rayleigh method, 

which involve approximations in the expressions for potential and kinetic energy and the 

differences are graphically shown in Figure 5. and Figure 6. 

 
Figure 5. Comparative results of the dependence between natural frequency and plate 

dimensions for square plates 
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Figure 6. Comparative results of the dependence between natural frequency width of 

rectangular plates (constant span of 3 m) 

 

In general, it can be concluded that the analytical (Rayleigh) method shows good 

agreement with the finite element analysis results for plates with characteristic dimensions. 

Both approaches exhibit the same trend of frequency reduction with increasing plate size, 

confirming the consistency of the models. However, due to the more conservative kinematic 

description of the plate in the Rayleigh method, the calculated natural frequencies are slightly 

lower than those obtained with the Abaqus software.  

6. CONCLUSION 

This paper presents two methods for determining the natural frequency of composite 

plates made of laminated timber and concrete using the Rayleigh method and modeling in 

Abaqus software. Based on the presented results, it can be concluded that the methods are 

in good agreement, with small deviations observed for plates with shorter spans and 

increasing deviations as the plate dimensions become larger. The results indicate that the 

natural frequency of composite plates can be reliably calculated using the Rayleigh method, 

making it suitable for use in engineering practice. 

In addition to the assumption of ideal bonding between timber and concrete, which affects 

the results, only a single term was used in the Rayleigh method, which limited the accuracy 

in predicting the natural frequencies. To further improve the accuracy and expand the validity 

of the results, it would be beneficial to implement an extended model with two or more terms 

in the deflection function approximation, which would represent the Rayleigh-Ritz method. 

This approach would allow for a more detailed analysis of the plate vibrations and could lead 

to more accurate results, especially in more complex cases. 

Additionally, in this study, only the self-weight of the composite plate was considered as 

the load, which represents a simplified approach. To more accurately simulate actual 

conditions, it would be beneficial to include an additional dead load that influences the plate’s 

vibrations. This can be achieved by increasing the material density in the analytical Rayleigh 

method. 

Additionally, it could be considered to expand the research to include different types of 

plates (varying layer thicknesses, or different materials) in order to analyze the 

generalizability of the methods in a broader context. Also selection of different trial functions 

for X and Y  could represent a further step toward a more accurate application of the 

Rayleigh method for analyzing the behavior of plates under various conditions. 
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